Lux Labs develops advanced optical materials using cutting edge nanophotonics and polymer fabrication methods. Our technology portfolio includes several innovations that were born from research at MIT.


Transparent displays enabled by resonant nanoparticle scattering

The ability to display graphics and texts on a transparent screen can enable many useful applications. Here we create a transparent display by projecting monochromatic images onto a transparent medium embedded with nanoparticles that selectively scatter light at the projected wavelength. We describe the optimal design of such nanoparticles, and experimentally demonstrate this concept with a blue-color transparent display made of silver nanoparticles in a polymer matrix. This approach has attractive features including simplicity, wide viewing angle, scalability to large sizes and low cost.



Nanophotonic particle simulation and inverse design using artificial neural networks

We propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations. Furthermore, the trained neural network can be used to solve nanophotonic inverse design problems by using back propagation, where the gradient is analytical, not numerical.

Science Mar 2014 .gif

Optical Broadband Angular Selectivity

Light selection based purely on the angle of propagation is a long-standing scientific challenge. In angularly selective systems, however, the transmission of light usually also depends on the light frequency. We tailored the overlap of the band gaps of multiple one-dimensional photonic crystals, each with a different periodicity, in such a way as to preserve the characteristic Brewster modes across a broadband spectrum. We provide theory as well as an experimental realization with an all–visible spectrum, p-polarized angularly selective material system. Our method enables transparency throughout the visible spectrum at one angle—the generalized Brewster angle—and reflection at every other viewing angle.